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ON THE C, TO C, CONVERSION FOR SOLID LINEAR
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The Cy to Cp conversion for solid linear macromolecules via the Nernst—Lindemann
equation Cp ~ CV=A0C2T/T,77 is discussed on hand of data for 10 crystals and seven
glasses. An average value of Ag = (5.11:2.41) - 10—3 mol K J—1 was calculated if the
moie is assumed to refer to heavy atoms only. This Ag is numerically equal to the original
Nernst—Lt indemann constant.

All measurements of heat capacity are done at constant pressure, giving data on
Cp. Heat capacities computed from vibrational spectra are, in contrast, always in
terms of constant volume, C,. Over the last years we established the ATHAS data
bank [1] which contains critically evaluated heat capacities Cp, for close to 100 macro-
molecules. As one tries to interpret these data in terms of their vibrational spectra
[2, 3], it becomes obvious that there is rarely enough information available to use the
thermodynamic relationship for C, to C, conversion:

(V)2
G,

Cp—~Cy=— v {1}
(),

For the comparison of measurement and calculation. Eq. (1) has thus central im-

portance. The usual experimental evaluation of Eq. (1) makes use of isothermal
compressibility

10V
=3,
and isobaric expansivity data
_1 v
@= ar)p (3)
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leading to

TVa?

The exact calculation of Cp, — C, needs thus compressibility and expansivity data over
the whole temperature range of the heat capacities of interest, which is usually be-
tween O and 700 K. Especially for the limiting amorphous and crystalline states, such
complete data are not available for any macromolecule. The most frequent approxima-
tion used for the calculation of C, — C, is that of Nernst and Lindemann [4] which
will be discussed in this paper. Earlier work in this laboratory on the application
of the Nernst—Lindemann equation dealt with polyethylene [5] and planar network
crystals {6].

On the Nernst—Lindemann equation

The Nernst—Lindemann equation [4] is written as
2
AOCp T

T (6)

Cp—C,=
where Ag, the Nernst—Lindemann constant is perhaps a universal constant, and 7,
represents the crystalline melting temperature. The equation is based on the Grineisen
equation of state [7] which relates p, V and total energy through the Griineisen
constant 7.

Furthermore, the ratio of a/C,; was shown for many metals to be practicaily constant
[8]. This leads on insertion into Eq. {4) to

Cp —Cy=AC2T (7)

where A is Voz2/(603), a characteristic constant for every material, related to the
Griineisen constant. Adding the suggestion that V/f is proportional to the melting
temperature 7,,, which is based on suggestions of Einstein [9] and Lindemann [10]
that the characteristic vibration frequency of a monatomic solid is related to volume,
mass, compressibility and melting temperature, one can easily derive Eq. {b) with a
value of Ag of 5.12 - 10—3 K mol/J or 0.0214 K mol/cal [4].

This far Eq. (5) looks like a well established, useful means to analyze and compare
Cp and C,. It must be pointed out, however, that all assumptions used in the deriva-
tion are, at best, semi-empirical. In addition, all equations are derived largely for
monatomic solids. A comparison with experiment is thus necessary before applying
Eqg. () to linear macromolecules which have a much more complicated structure.
First, it is necessary to refer the constant Ag to the proper number of base moles.
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Heat capacity is always quoted in terms of moles "repeating unit”. In principle, Ag
should thus be divided by the number of atoms in the repeating units. It will be shown
here, that better agreement with experimental data is achieved if one divides by the
number of heavy atoms only, i.e. one neglects the number of H-atoms in the repeating
unit. The reason lies with the rather high vibration frequencies of the O—H, N—H, or
0O—H stretching and bending vibrations, which are excited only to a small degree in
the solid state [11, 12]. Furthermore, the basic Griineisen constant should be constant
with temperature only as long as a single vibration frequency can approximate the
thermal properties (Einstein approximation). Particularly for macromolecules the
Griineisen “constant” is thus always based on an average frequency and it was shown
[13] that this average, and with it the Griineisen constant, varies with temperature as
additional vibrations become excited. One expects thus that the range of extrapolation
and the usefulness of an empirical Ag is limited in temperature. Also, the connection
of T,, with a characteristic vibrational frequency [10] is doubtful even for monatomic
solids, and certainly could only be treated as an empirical observation for macro-
molecules. Overall, one must say that the usefulness of Ag for macromolecules, which
is documented below, is surprising. The relatively constant Griineisen parameter at
intermediate temperatures was also studied by thermal conductivity [14], bulk
modulus pressure dependence [15], dynamic bulk modulus measurements [16], and
thermoelastic effects [17].

Aq values for macromolecules

Ag — values for Eq. (b) were calculated for 10 polymeric crystals and seven
glasses by equating Eqs (5) and (4) for temperatures close to 298 K. Table 1 displays
the data used, results, and references. The average Ag for the crystals per mole of
heavy atom is (5.4%2.7) - 10—3 K mol/J, the average Ao for the glasses is
{6.1£2.4) - 10—3 K mol/J. To convert Ag to the needed unit per mole of repeating
unit these universal values must be divided by the number of heavy atoms in the
repeating unit.

Discussion

A typical example of the use of Table 1 and Eq. (5) is that of the comparison of
the heat capacities of a series of aliphatic polyoxides at constant volume, calculated
from vibrational spectra, with measured heat capacities at constant pressure [18].
Tabie 1 contains four values for Ay of the homologous polyoxide series which range
from 4.86 (polyethylene) to 3.52 (polyoxymethylene). These data can be fitted with
the equation

Aglx) =482 -1.30x {8)
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Fig. 1 Calculated heat capacities Cy (a) and Cp (b). PE: polyethylene, POM: polyoxymethylene,
POE: polyoxyethylene, PO3M: polyoxytrimethylene, POMOE: polyoxymethyleneoxy-
ethylene, PO4M:. polyoxytetramethyiene, POMO4M: polyoxymethyleneoxytetra-
methylene, POSM: polyoxyoctamethylene. C,, was calculated from an approximate skeletal
vibration spectrum (Tarasov) and group vibrations. The C), to Cp conversion was carried out
using Eq. (5) with values of Agix) from Eq. (8) using the appropriate number of heavy
atoms. For details see Ref. [18]. The arrows in Figure 1b indicate the melting temperatures
of the respective polymers

where x is the oxygen to carbon atom ratio. Figure 1 shows the calculated C, and C,,
over a wide temperature range for crystalline polyoxides which have experimentally
known heat capacities [1]. The melting temperatures which limit the practical applica-
tion of the data are indicated by arrows in Fig. 1b. The average deviation of the
calculated C, from the experimental Cp, is less than 5%, only slightly larger than the
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usual intrinsic agreement of data bank data from different laboratories (3%). Up to
the melting temperature it seems thus empirically permissible to use a constant Ag-
value fixed by an experimental set of data at one temperature only. In case even these
limited data are not available it may even be sufficient to use the universal (average)
Ag values of Table 1 which, in turn, are similar to those derived for metals [4], salts
[4), and layer crystals [6] if contributions from hydrogen atoms are ignored.

At temperature above melting a rather sharp upturn in Cp, is noticed. Although this
temperature range is far from realistic for actual experimentation, we feel that this
upturn in the calculated Cp, which contrasts the more moderate increase in Cy, is an
indication of the limit of usefulness of the Nernst—Lindemann equation at high tem-
perature. A continuous decrease in Ag is expected due to the increasing excitation
of C—H bending frequencies. Similarly it was shown for many polymers that the
Griineisen 'constant’ (EQ. 6) decreases slowly with increasing temperature [19, 20].
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Zusammenfassung — An Hand von sich auf 10 Kristalle und 7 Glaser beziehenden Daten wird die
Umrechnung von Cy- in Cp-Werte fiir feste lineare Makromolekiile mittels der Nernst—Lindemann-
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Gleichung Cp — Cy = AOsz T/T diskutiert. Ein Durchschnittswert von Ag = (5.11+2.41) « 103
mol K J—1 wurde unter der Annahme berechnet, daB sich das Mol nur auf schwere Atome bezieht.
Dieser Ag-Wert ist numerisch gleich der urspriinglichen Nernst—Lindemann-Konstanten.

Peslome — Ha ocHoBe umeowmxca aakHblx AnA 10 KPUCTannoB n HECKONbKWMX CTeKOnN, 06-
cymaeuo npespauwenve C, o Cp, ucxoaR m3 ypasHeHur HepHcta—SluHaemaHHa Cp —Cy =
—AOC T/Tm. Npepnonaran, 470 MONb OTHOCUTCA TOMLKO K TAXENbIM aroMam, 6sin0
sbmucneuo cpegHee 3HaveHue Ag paeHbiM (5.11:2.41) - 10—3 mone - Kax—1. 310 3nauenue
A( YMCNEHHO PaBHO NEPBOHAYANLHON KOHCTaHTe ypasHeHuR HepHcta—IlTnnaemanna.
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